

Lecture Presentation

Chapter 5

Thermochemistry

John D. Bookstaver St. Charles Community College Cottleville, MO

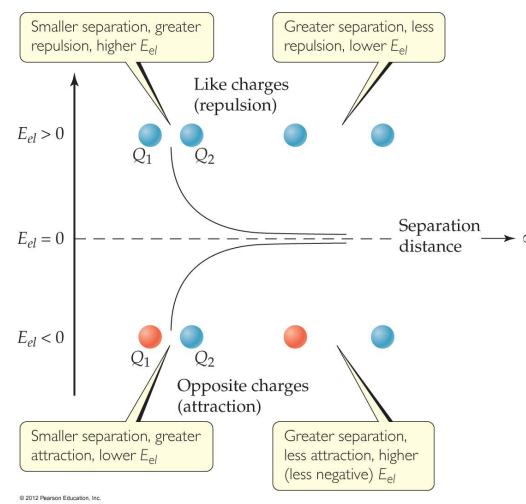
Energy

- Energy is the ability to do work or transfer heat.
 - Energy used to cause an object that has mass to move is called work.
 - Energy used to cause the temperature of an object to rise is called **heat**.

Kinetic Energy

Kinetic energy is energy an object possesses by virtue of its motion:

$$E_k = \frac{1}{2} m v^2$$


High potential energy, zero kinetic energy

Decreasing potential energy, increasing kinetic energy

Thermochemistry

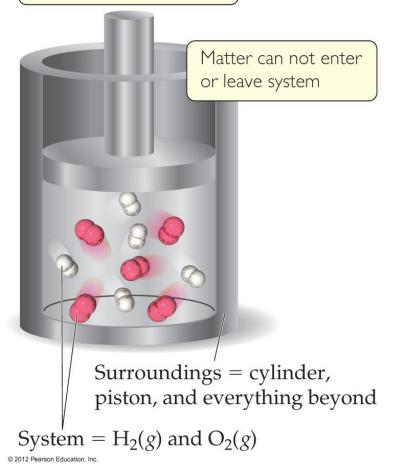
© 2012 Pearson Education, Inc.

Potential Energy

- **Potential energy** is energy an object possesses by virtue of its position or chemical composition.
- The most important form of potential energy in molecules is electrostatic potential energy, *E*_{el}:

$$E_{\rm el} = \frac{\kappa Q_1 Q_2}{d}$$

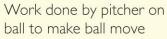
Thermochemistry


Units of Energy

- The SI unit of energy is the joule (J): $1 J = 1 \frac{\text{kg m}^2}{s^2}$
- An older, non-SI unit is still in widespread use: the calorie (cal):
 1 cal = 4.184 J

Definitions: System and Surroundings

Energy can enter or leave system as heat or as work done on piston



- The system includes the molecules we want to study (here, the hydrogen and oxygen molecules).
- The **surroundings** are everything else (here, the cylinder and piston).

Definitions: Work

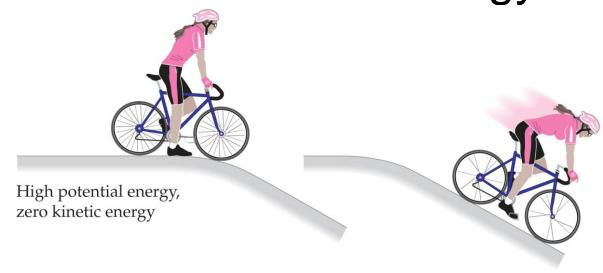
- Energy used to move an object over some distance is work:
- w = F × d where w is work, F is the force, and d is the distance over which the force is exerted.

(a) © 2012 Pearson Education, Inc

Thermochemistry

Heat

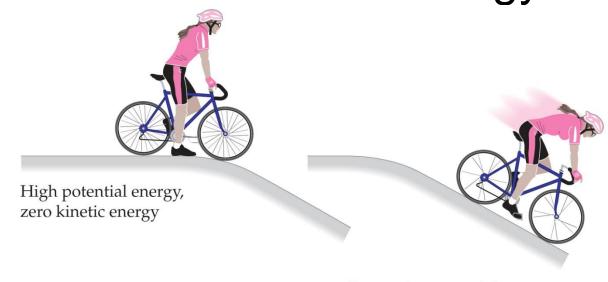
Heat added by burner to water makes water temperature rise



- Energy can also be transferred as heat.
- Heat flows from warmer objects to cooler objects.

Thermochemistry

Conversion of Energy

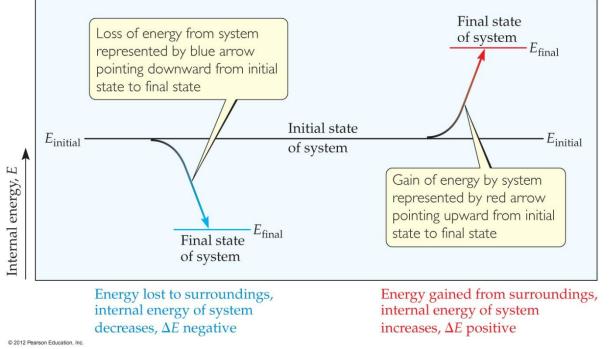


Decreasing potential energy, increasing kinetic energy

© 2012 Pearson Education, Inc.

- Energy can be converted from one type to another.
- For example, the cyclist in Figure 5.2 has potential energy as she sits on top of the hill.

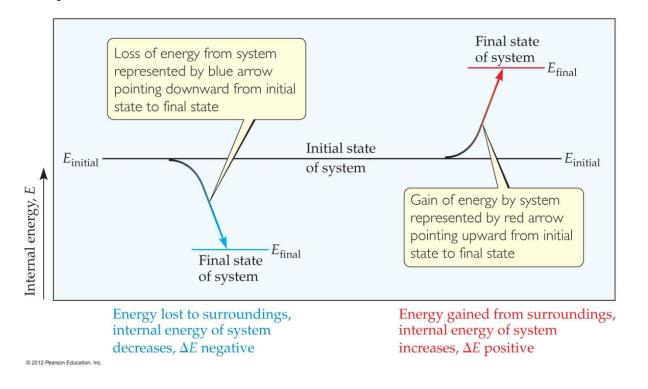
Decreasing potential energy, increasing kinetic energy


• As she coasts down the hill, her potential energy is converted to kinetic energy.

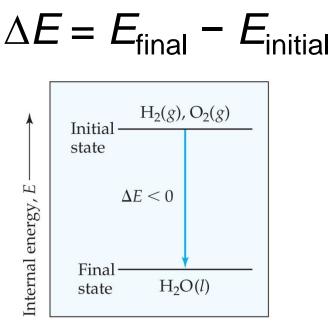
© 2012 Pearson Education. Inc.

 At the bottom, all the potential energy she had at the top of the hill is now kinetic energy.

First Law of Thermodynamics


- Energy is neither created nor destroyed.
- In other words, the total energy of the universe is a constant; if the system loses energy, it must be gained by the surroundings, and vice versa.

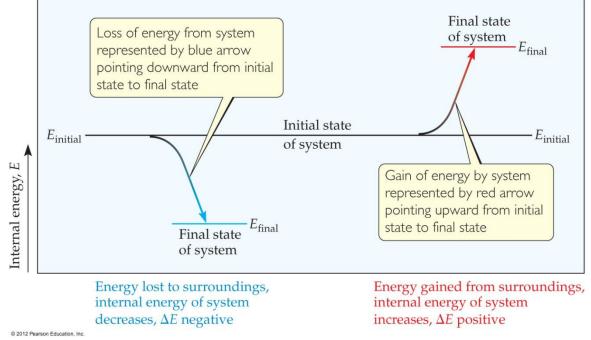
© 2012 Pearson Education, Inc.


Internal Energy

The **internal energy** of a system is the sum of all kinetic and potential energies of all components of the system; we call it *E*.

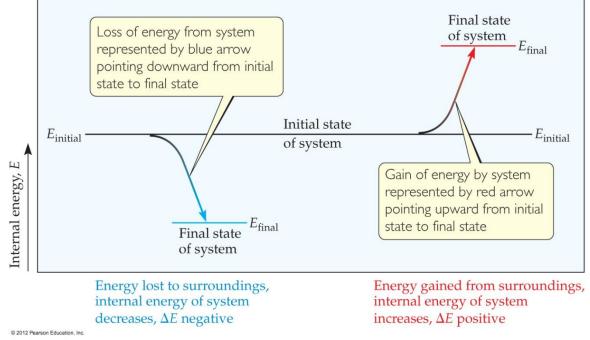
Internal Energy

By definition, the change in internal energy, ΔE , is the final energy of the system minus the initial energy of the system:

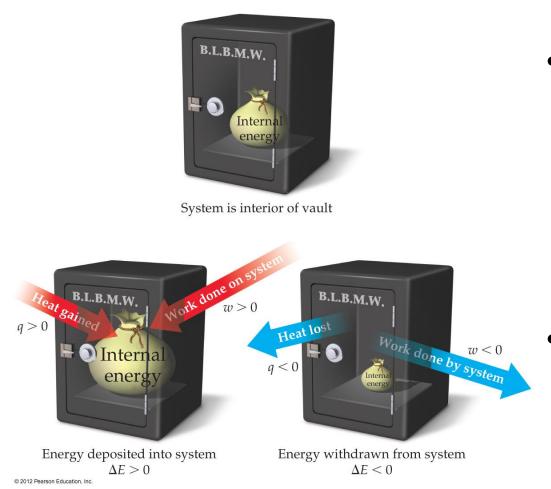


 E_{initial} greater than E_{final} , energy released from system to surroundings during reaction, $\Delta E < 0$

Changes in Internal Energy


- If $\Delta E > 0$, $E_{\text{final}} > E_{\text{initial}}$
 - Therefore, the system *absorbed* energy from the surroundings.
 - This energy change is called **endergonic**.

Thermochemistry


Changes in Internal Energy

- If $\Delta E < 0$, $E_{\text{final}} < E_{\text{initial}}$
 - Therefore, the system *released* energy to the surroundings.
 - This energy change is called **exergonic**.

Changes in Internal Energy

- When energy is exchanged between the system and the surroundings, it is exchanged as either heat (q) or work (w).
- That is, $\Delta E = q + w$.

ΔE , q, w, and Their Signs

TABLE 5.1 • Sign Conventions for q, w, and ΔE

For q	+ means system <i>gains</i> heat
-------	----------------------------------

- For *w* + means work done *on* system
- For ΔE + means *net gain* of energy by system

© 2012 Pearson Education, Inc.

- means system *loses* heat
- means work done by system
- means *net loss* of energy by system

Thermochemistry

Exchange of Heat between System and Surroundings

• When heat is absorbed by the system from the surroundings, the process is **endothermic**.

System: reactants + products

Surroundings: solvent, initially at room temperature

Heat flows from surroundings into system (endothermic reaction), temperature of surroundings drops, thermometer reads temperature well below room temperature

Exchange of Heat between System and Surroundings

- When heat is absorbed by the system from the surroundings, the process is **endothermic**.
- When heat is released by the system into the surroundings, the process is **exothermic**.

System: reactants

Heat flows (violently) from system into surroundings (exothermic reaction), temperature of surroundings increases

(b) © 2012 Pearson Education, Inc.

Usually we have no way of knowing the internal energy of a system; finding that value is simply too complex a problem.

Initially hot water cools to water at 25 °C; once this temperature is reached, system has internal energy *E*

Ice warms up to water at 25 °C; once this temperature is reached, system has internal energy E

internal energy

© 2012 Pearson Education, Inc.

- However, we do know that the internal energy of a system is independent of the path by which the system achieved that state.
 - In the system depicted in Figure 5.9, the water could have reached room temperature from either direction.

50 g H₂O(*l*) 100 °C

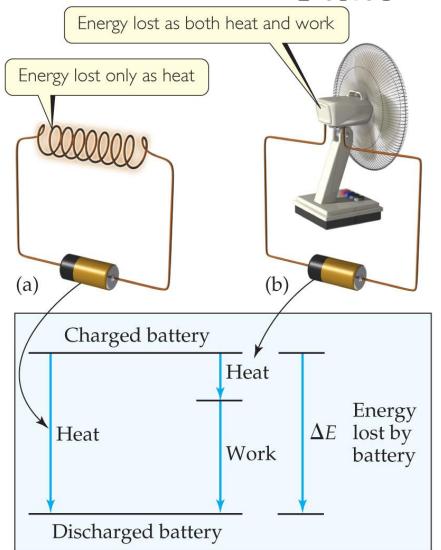
© 2012 Pearson Education, Inc.

Initially hot water cools to water at 25 °C; once this temperature is reached, system has internal energy *E*

Ice warms up to water at 25 °C; once this temperature is reached, system has internal energy E

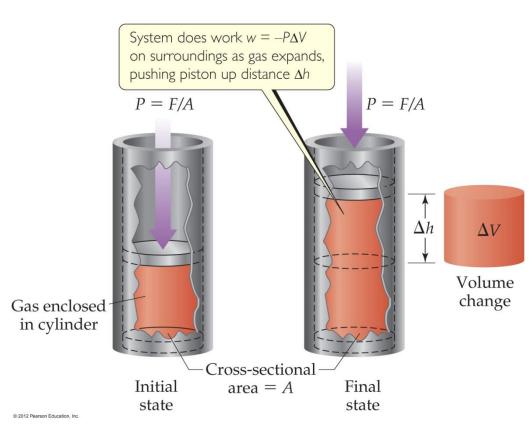
- Therefore, internal energy is a state function.
- It depends only on the present state of the system, not on the path by which the system arrived at that state.
- And so, ΔE depends only on E_{initial} and E_{final} .

Initially hot water cools to water at 25 °C; once this temperature is reached, system has internal energy *E* 50 g H₂O(*l*) 25 °C


Ice warms up to water at 25 °C; once this temperature is reached, system has internal energy E

Thermochemistry

© 2012 Pearson Education, Inc.

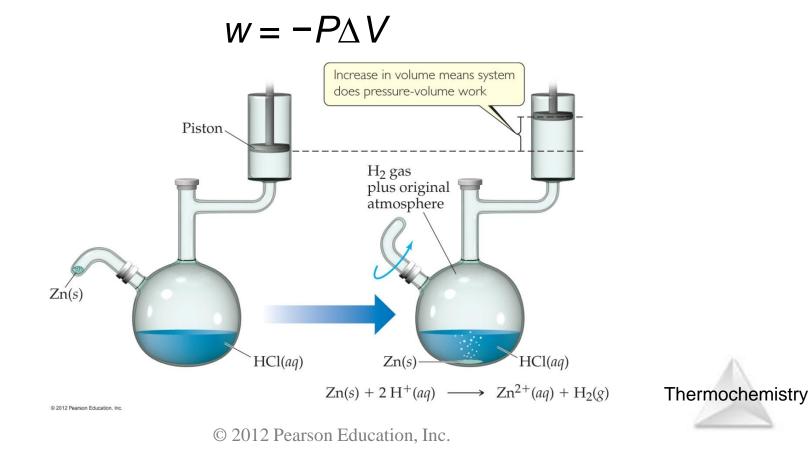


[•] However, *q* and *w* are *not* state functions.

- Whether the battery is shorted out or is discharged by running the fan, its ∆E is the same.
 - But q and w are different in the two cases.

Thermochemistry

Work



Usually in an open container the only work done is by a gas pushing on the surroundings (or by the surroundings pushing on the gas).

Work

We can measure the work done by the gas if the reaction is done in a vessel that has been fitted with a piston:

Enthalpy

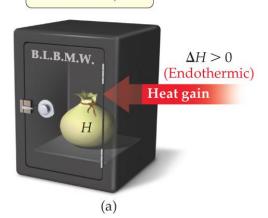
- If a process takes place at constant pressure (as the majority of processes we study do) and the only work done is this pressure-volume work, we can account for heat flow during the process by measuring the *enthalpy* of the system.
- Enthalpy is the internal energy plus the product of pressure and volume:

$$H = E + PV$$

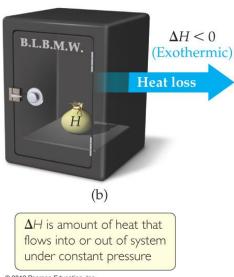
Enthalpy

- When the system changes at constant pressure, the change in enthalpy, ΔH , is $\Delta H = \Delta (E + PV)$
- This can be written

 $\Delta H = \Delta E + P \Delta V$


Enthalpy

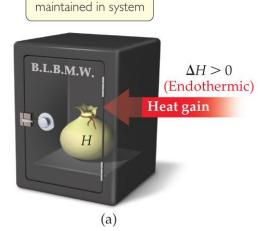
• Since $\Delta E = q + w$ and $w = -P\Delta V$, we can substitute these into the enthalpy expression:


$$\Delta H = \Delta E + P \Delta V$$
$$\Delta H = (q + w) - w$$
$$\Delta H = q$$

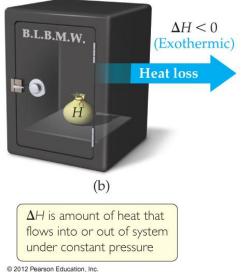
 So, at constant pressure, the change in enthalpy is the heat gained or lost.

Endothermicity and Exothermicity

Constant pressure maintained in system



 A process is endothermic when ∆H is positive.



© 2012 Pearson Education, Inc.

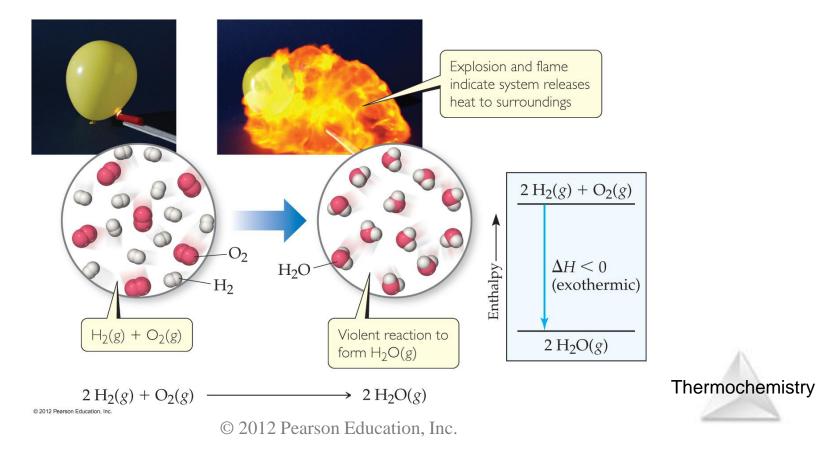
Endothermicity and Exothermicity

Constant pressure

- A process is endothermic when ΛH is positive.
- A process is exothermic when ΔH is negative.

Enthalpy of Reaction

The *change* in enthalpy, ΔH , is the enthalpy of the products minus the enthalpy of the reactants:


$$\Delta H = H_{\text{products}} - H_{\text{reactants}}$$

 $CH_4(g) + 2O_2(g)$ $\Delta H_1 =$ $\Delta H_2 =$ 890 kJ $-890 \, \text{kJ}$ Enthalpy $CO_2(g) + 2 H_2O(l)$

Thermochemistry

Enthalpy of Reaction

This quantity, ΔH , is called the **enthalpy of reaction**, or the **heat of reaction**.

The Truth about Enthalpy

- 1. Enthalpy is an extensive property.
- 2. ΔH for a reaction in the forward direction is equal in size, but opposite in sign, to ΔH for the reverse reaction.
- 3. ΔH for a reaction depends on the state of the products and the state of the reactants.

Calorimetry Thermometer Glass stirrer Cork stopper Two Styrofoam[®] cups nested together **Reaction mixture** in solution

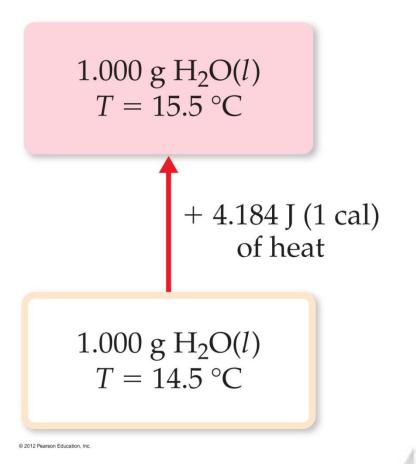
Since we cannot know the exact enthalpy of the reactants and products, we measure ΔH through calorimetry, the measurement of heat flow.

© 2012 Pearson Education, Inc.

© 2012 Pearson Education, Inc.

Heat Capacity and Specific Heat

The amount of energy required to raise the temperature of a substance by 1 K (1°C) is its **heat capacity**.


TABLE 5.2 Specific Heats of Some Substances at 298 K				
Elements		Compounds		
Substance	Specific Heat (J/g-K)	Substance	Specific Heat (J/g-K)	
$N_2(g)$	1.04	$H_2O(l)$	4.18	
Al(s)	0.90	$CH_4(g)$	2.20	
Fe(s)	0.45	$CO_2(g)$	0.84	
Hg(l)	0.14	$CaCO_3(s)$	0.82	

© 2012 Pearson Education, Inc.

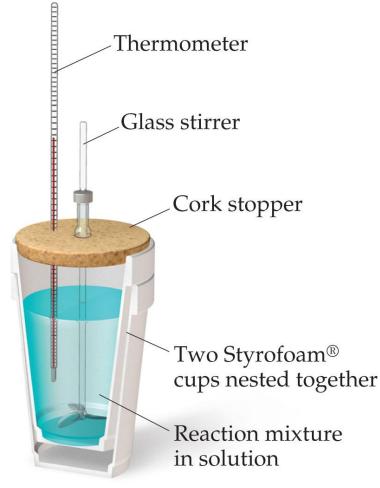
© 2012 Pearson Education, Inc.

Heat Capacity and Specific Heat

We define **specific heat capacity** (or simply **specific heat**) as the amount of energy required to raise the temperature of 1 g of a substance by 1 K (or 1 °C).

Thermochemistry

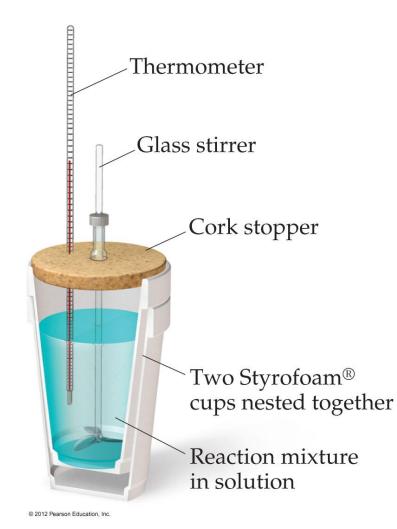
Heat Capacity and Specific Heat


Specific heat, then, is

Specific heat = $\frac{\text{heat transferred}}{\text{mass} \times \text{temperature change}}$

$$s = \frac{q}{m \times \Delta T}$$

Constant Pressure Calorimetry

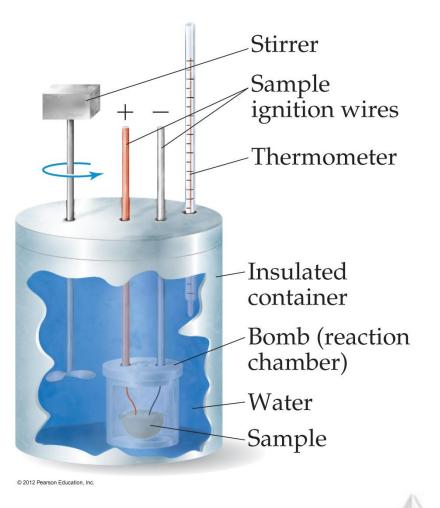


By carrying out a reaction in aqueous solution in a simple calorimeter such as this one, one can indirectly measure the heat change for the system by measuring the heat change for the water in the calorimeter.

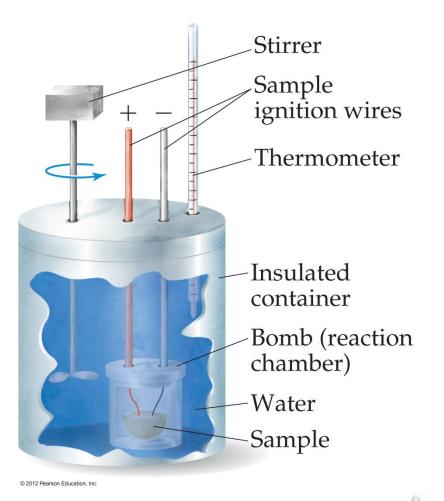
Thermochemistry

© 2012 Pearson Education, Inc

Constant Pressure Calorimetry


Because the specific heat for water is well known (4.184 J/g-K), we can measure ΔH for the reaction with this equation:

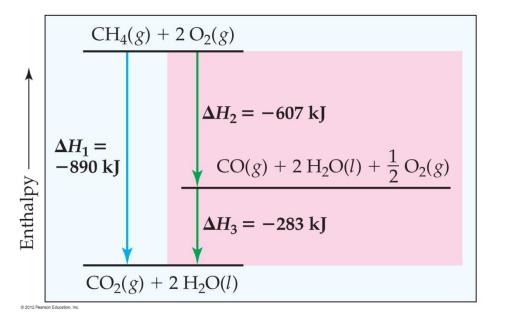
 $q = m \times s \times \Delta T$


Bomb Calorimetry

- Reactions can be carried out in a sealed "bomb" such as this one.
- The heat absorbed (or released) by the water is a very good approximation of the enthalpy change for the reaction.

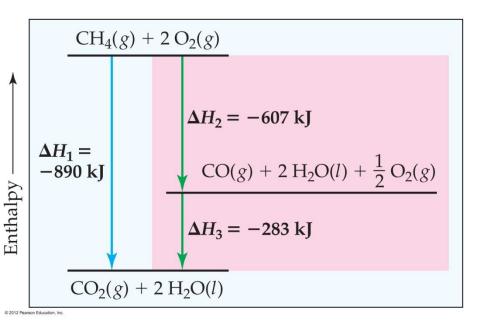
Bomb Calorimetry

- Because the volume in the bomb calorimeter is constant, what is measured is really the change in internal energy, ∆E, not ∆H.
- For most reactions, the difference is very small.



Hess's Law

- □ ΔH is well known for many reactions, and it is inconvenient to measure ΔH for every reaction in which we are interested.
- However, we can estimate ΔH using published ΔH values and the properties of enthalpy.


Hess's Law

Hess's law states that "[i]f a reaction is carried out in a series of steps, ΔH for the overall reaction will be equal to the sum of the enthalpy changes for the individual steps."

Thermochemistry

Hess's Law

Because ΔH is a state function, the total enthalpy change depends only on the initial state of the reactants and the final state of the products.

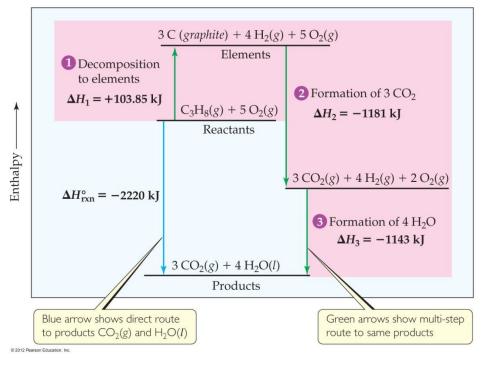
Enthalpies of Formation

An enthalpy of formation, ΔH_f , is defined as the enthalpy change for the reaction in which a compound is made from its constituent elements in their elemental forms.

Standard Enthalpies of Formation

Standard enthalpies of formation, ΔH_f° , are measured under standard conditions (25 ° *C* and 1.00 atm pressure).

TABLE 5.3 • Standard Enthalpies of Formation, ΔH_f° , at 298 K								
Substance	Formula	ΔH_{f}° (kJ/mol)	Substance	Formula	ΔH_{f}° (kJ/mol)			
Acetylene	$C_2H_2(g)$	226.7	Hydrogen chloride	HCl(g)	-92.30			
Ammonia	$NH_3(g)$	-46.19	Hydrogen fluoride	HF(g)	-268.60			
Benzene	$C_6H_6(l)$	49.0	Hydrogen iodide	HI(g)	25.9			
Calcium carbonate	$CaCO_3(s)$	-1207.1	Methane	$CH_4(g)$	-74.80			
Calcium oxide	CaO(s)	-635.5	Methanol	$CH_3OH(l)$	-238.6			
Carbon dioxide	$CO_2(g)$	-393.5	Propane	$C_3H_8(g)$	-103.85			
Carbon monoxide	CO(g)	-110.5	Silver chloride	AgCl(s)	-127.0			
Diamond	C(s)	1.88	Sodium bicarbonate	$NaHCO_3(s)$	-947.7			
Ethane	$C_2H_6(g)$	-84.68	Sodium carbonate	$Na_2CO_3(s)$	-1130.9			
Ethanol	$C_2H_5OH(l)$	-277.7	Sodium chloride	NaCl(s)	-410.9			
Ethylene	$C_2H_4(g)$	52.30	Sucrose	$C_{12}H_{22}O_{11}(s)$	-2221			
Glucose	$C_6H_{12}O_6(s)$	-1273	Water	$H_2O(l)$	-285.8			
Hydrogen bromide	HBr(g)	-36.23	Water vapor	$H_2O(g)$	-241.8			

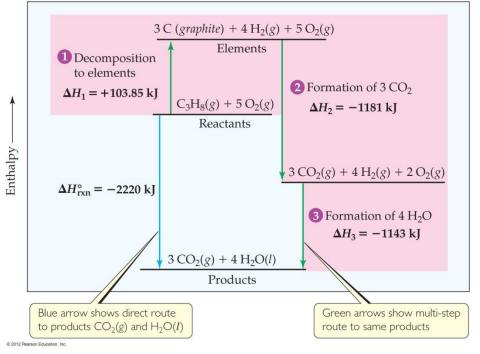

© 2012 Pearson Education, Inc.

© 2012 Pearson Education, Inc.

Calculation of ΔH $C_3H_8(g) + 5O_2(g) \longrightarrow 3CO_2(g) + 4H_2O(I)$

 Imagine this as occurring in three steps:

$$C_3H_8(g) \longrightarrow 3C_{(graphite)} + 4H_2(g)$$



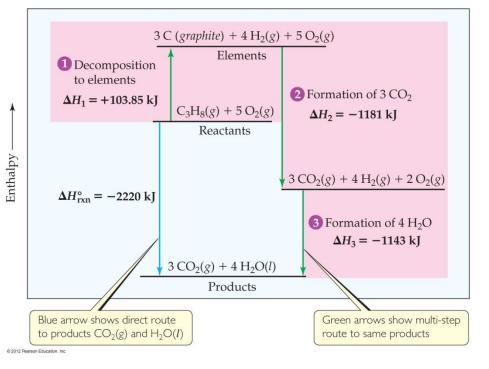
Thermochemistry

Calculation of ΔH $C_3H_8(g) + 5O_2(g) \longrightarrow 3CO_2(g) + 4H_2O(I)$

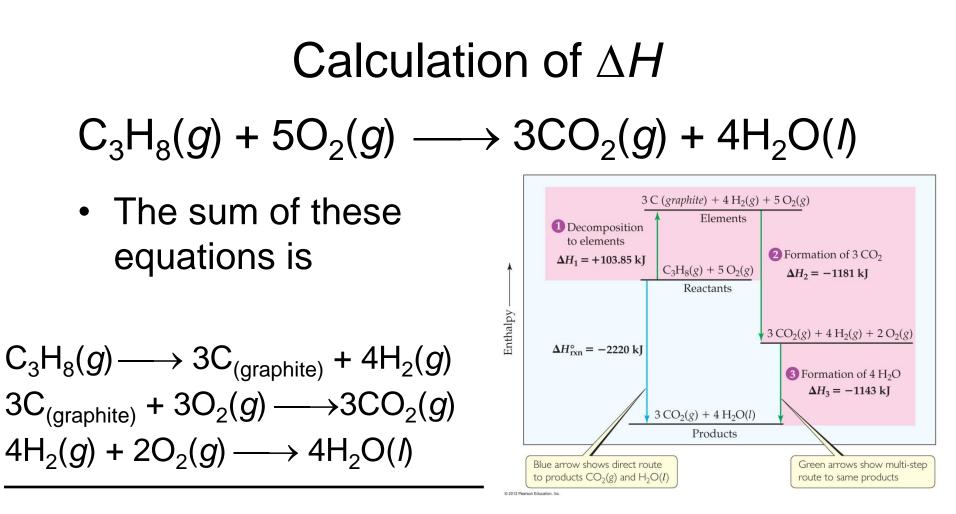
• Imagine this as occurring in three steps:

 $C_{3}H_{8}(g) \longrightarrow 3C_{(graphite)} + 4H_{2}(g)$ $3C_{(graphite)} + 3O_{2}(g) \longrightarrow 3CO_{2}(g)$

Thermochemistry


Calculation of ΔH $C_3H_8(g) + 5O_2(g) \longrightarrow 3CO_2(g) + 4H_2O(I)$

 Imagine this as occurring in three steps:


$$C_{3}H_{8}(g) \longrightarrow 3C_{(graphite)} + 4H_{2}(g)$$

$$3C_{(graphite)} + 3O_{2}(g) \longrightarrow 3CO_{2}(g)$$

$$4H_{2}(g) + 2O_{2}(g) \longrightarrow 4H_{2}O(I)$$

Thermochemistry

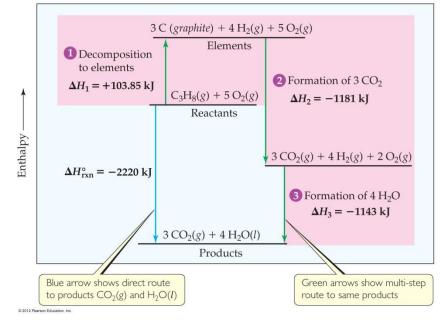
 $C_3H_8(g) + 5O_2(g) \longrightarrow 3CO_2(g) + 4H_2O(I)$

Thermochemistry

Calculation of ΔH

We can use Hess's law in this way:

$$\Delta H = \Sigma n \Delta H_{f,\text{products}} - \Sigma m \Delta H_f^{\circ} \text{,reactants}$$


where *n* and *m* are the stoichiometric coefficients.

Calculation of ΔH

$$\begin{split} &C_{3}H_{8}(g) + 5O_{2}(g) \longrightarrow 3CO_{2}(g) + 4H_{2}O(I) \\ &\Delta H = [3(-393.5 \text{ kJ}) + 4(-285.8 \text{ kJ})] - [1(-103.85 \text{ kJ}) + 5(0 \text{ kJ})] \\ &= [(-1180.5 \text{ kJ}) + (-1143.2 \text{ kJ})] - [(-103.85 \text{ kJ}) + (0 \text{ kJ})] \end{split}$$

= (-2323.7 kJ) - (-103.85 kJ) = -2219.9 kJ

© 2012 Pearson Education, Inc.

Energy in Foods

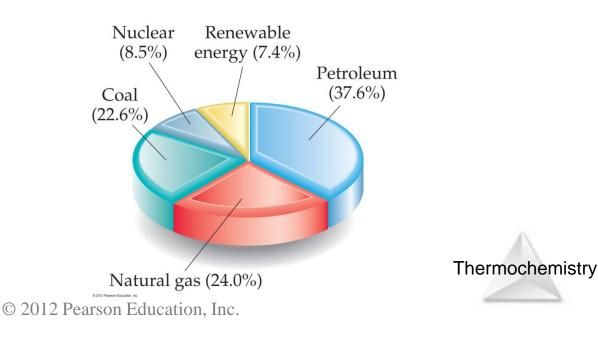
Most of the fuel in the food we eat comes from carbohydrates and fats.

TABLE 5.4 • Compositions and Fuel Values of Some Common Foods

	Approximate Co	Fuel Value			
	Carbohydrate	Fat	Protein	kJ/g	kcal/g (Cal/g)
Carbohydrate	100	_	_	17	4
Fat	_	100		38	9
Protein	—		100	17	4
Apples	13	0.5	0.4	2.5	0.59
Beer [†]	1.2	2 <u> </u>	0.3	1.8	0.42
Bread	52	3	9	12	2.8
Cheese	4	37	28	20	4.7
Eggs	0.7	10	13	6.0	1.4
Fudge	81	11	2	18	4.4
Green beans	7.0		1.9	1.5	0.38
Hamburger	—	30	22	15	3.6
Milk (whole)	5.0	4.0	3.3	3.0	0.74
Peanuts	22	39	26	23	5.5

[†]Beer typically contains 3.5% ethanol, which has fuel value.

*Although fuel values represent the heat *released* in a combustion reaction, fuel values are reported as positive numbers.


Thermochemistry

Energy in Fuels

TABLE 5.5 • Fuel Values and Compositions of Some Common Fuels **Approximate Elemental Composition** (mass %) Fuel Value (kJ/g) C Η 0 Wood (pine) 50 6 44 18 Anthracite coal (Pennsylvania) 82 2 31 1 Bituminous coal (Pennsylvania) 77 5 7 32 Charcoal 100 0 0 34 Crude oil (Texas) 0 85 12 45 Gasoline 0 85 15 48 Natural gas 70 23 0 49 Hydrogen 0 100 0 142

The vast majority of the energy consumed in this country comes from fossil fuels.

