
#### Lecture Presentation

#### **Chapter 7**

# Periodic Properties of the Elements

John D. Bookstaver St. Charles Community College Cottleville, MO

### Development of Periodic Table



| La | Ce | Pr | Nd | Pm | Sm | Eu | Gd | Tb | Dy | Но | Er | Tm | Yb |
|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| Ac | Th | Pa | U  | Np | Pu | Am | Cm | Bk | Cf | Es | Fm | Md | No |

Ancient Times

Middle Ages-1700

1735–1843

1843-1886

1894–1918

1923–1961

**Dmitri** 

Mendeleev and

Lothar Meyer

independently

same conclusion

elements should

came to the

about how

be grouped.

(9 elements)

(6 elements)

(42 elements)

(18 elements)

(11 elements)

(17 elements)

1965-

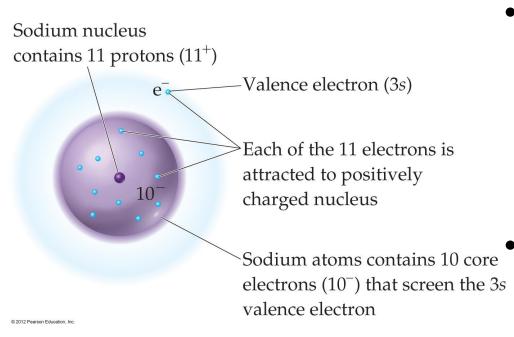
(9 elements)

© 2012 Pearson Education, Inc.

### Development of Periodic Table

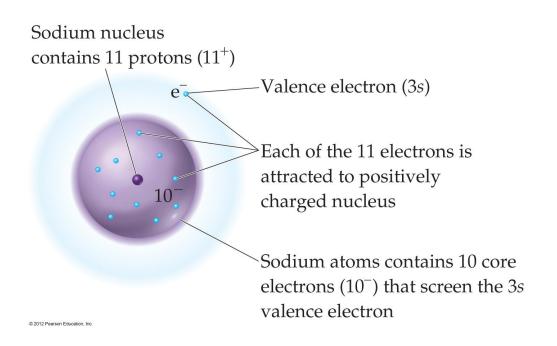
TABLE 7.1 • Comparison of the Properties of Eka-Silicon Predicted by Mendeleev with the Observed Properties of Germanium

| Property                              | Mendeleev's Predictions for<br>Eka-Silicon (made in 1871) | Observed Properties of Germanium (discovered in 1886) |
|---------------------------------------|-----------------------------------------------------------|-------------------------------------------------------|
| Atomic weight                         | 72                                                        | 72.59                                                 |
| Density (g/cm <sup>3</sup> )          | 5.5                                                       | 5.35                                                  |
| Specific heat (J/g-K)                 | 0.305                                                     | 0.309                                                 |
| Melting point (°C)                    | High                                                      | 947                                                   |
| Color                                 | Dark gray                                                 | Grayish white                                         |
| Formula of oxide                      | $XO_2$                                                    | ${\sf GeO}_2$                                         |
| Density of oxide (g/cm <sup>3</sup> ) | 4.7                                                       | 4.70                                                  |
| Formula of chloride                   | $XCl_4$                                                   | $\mathrm{GeCl}_4$                                     |
| Boiling point of chloride (°C)        | A little under 100                                        | 84                                                    |


© 2012 Pearson Education, Inc.

Mendeleev, for instance, predicted the discovery of germanium (which he called ekasilicon) as an element with an atomic weight between that of zinc and arsenic, but with chemical properties similar to those of silicon.

#### Periodic Trends


- In this chapter, we will rationalize observed trends in
  - Sizes of atoms and ions.
  - Ionization energy.
  - Electron affinity.

### Effective Nuclear Charge

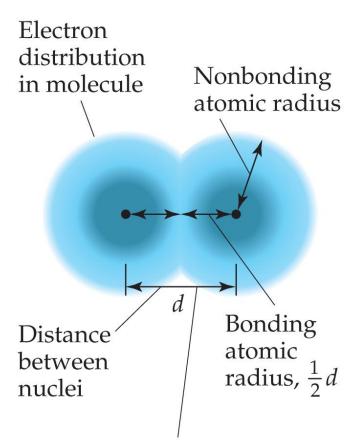


- In a many-electron atom, electrons are both attracted to the nucleus and repelled by other electrons.
  - The nuclear charge that an electron experiences depends on both factors.

### Effective Nuclear Charge



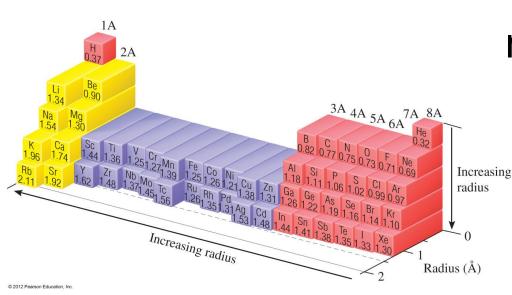
The effective nuclear charge,  $Z_{\text{eff}}$ , is found this way:


$$Z_{\text{eff}} = Z - S$$

where Z is the atomic number and S is a screening constant, usually close to the number of inner electrons.

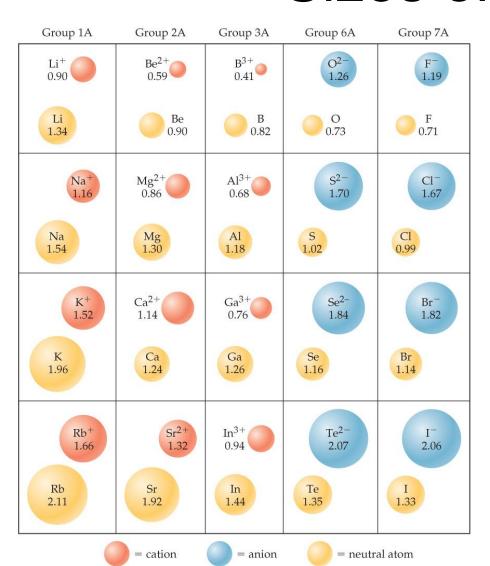
Periodic

#### What Is the Size of an Atom?


The bonding atomic radius is defined as one-half of the distance between covalently bonded nuclei.

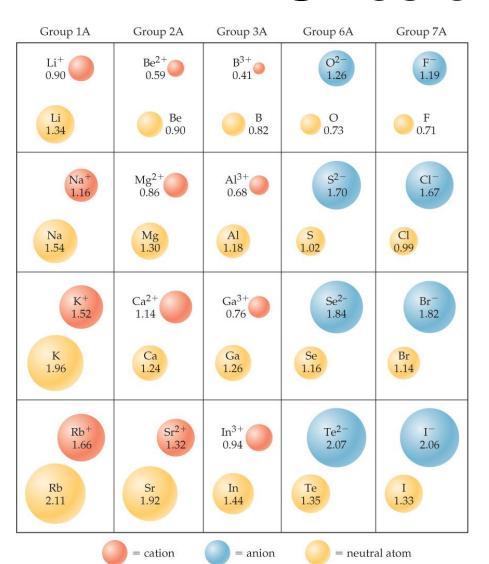


Nuclei cannot get any closer to each other because of electron-electron repulsion

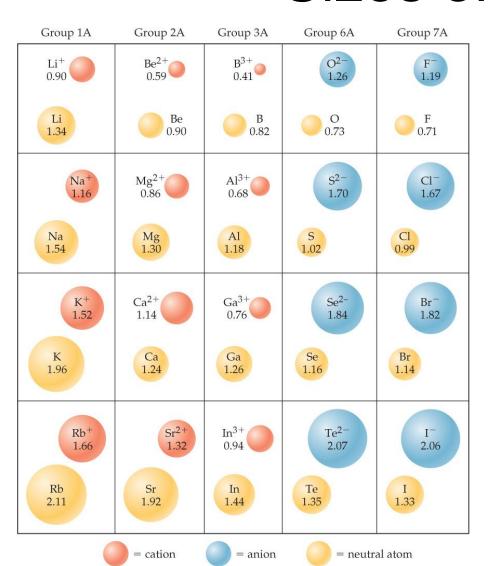

2012 Pearson Education, Inc.

#### Sizes of Atoms




## The bonding atomic radius tends to

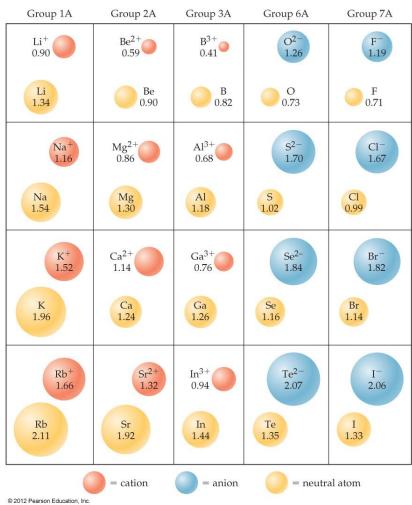
- Decrease from left to right across a row (due to increasing  $Z_{eff}$ ).
- Increase from top to bottom of a column (due to the increasing value of n).

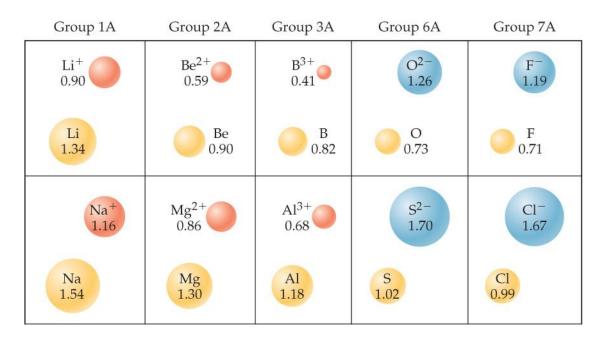



© 2012 Pearson Education, Inc.

- Ionic size depends upon
  - The nuclear charge.
  - The number of electrons.
  - The orbitals in which electrons reside.




- Cations are smaller than their parent atoms:
  - The outermost electron is removed and repulsions between electrons are reduced.




© 2012 Pearson Education, Inc.

- Anions are larger than their parent atoms"
  - Electrons are added and repulsions between electrons are increased.

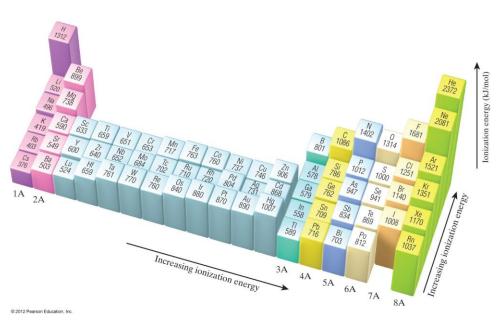
- lons increase in size as you go down a column:
  - This increase in size is due to the increasing value of n.





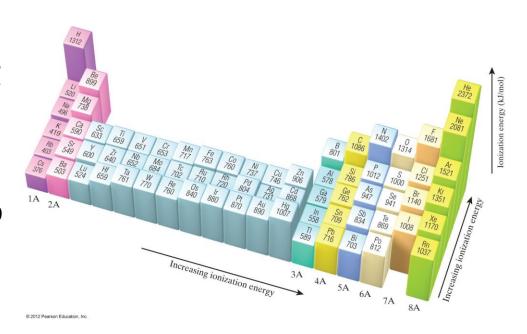
- In an isoelectronic series, ions have the same number of electrons.
- Ionic size decreases with an increasing nuclear charge.

### **Ionization Energy**

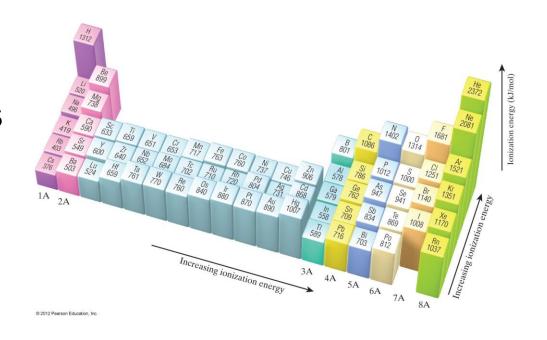

- The ionization energy is the amount of energy required to remove an electron from the ground state of a gaseous atom or ion.
  - The first ionization energy is that energy required to remove the first electron.
  - The second ionization energy is that energy required to remove the second electron, etc.

## **Ionization Energy**

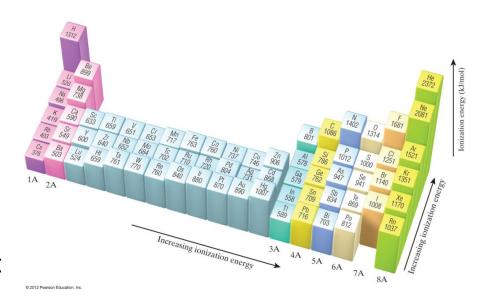
- It requires more energy to remove each successive electron.
- When all valence electrons have been removed, the ionization energy takes a quantum leap.


| Element | $I_1$ | $I_2$ | $I_3$ | $I_4$  | $I_5$               | $I_6$  | $I_7$  |
|---------|-------|-------|-------|--------|---------------------|--------|--------|
| Na      | 496   | 4562  | am    | (i     | nner-shell electror | ns)    |        |
| Mg      | 738   | 1451  | 7733  |        |                     |        |        |
| Al      | 578   | 1817  | 2745  | 11,577 |                     |        |        |
| Si      | 786   | 1577  | 3232  | 4356   | 16,091              |        |        |
| P       | 1012  | 1907  | 2914  | 4964   | 6274                | 21,267 |        |
| S       | 1000  | 2252  | 3357  | 4556   | 7004                | 8496   | 27,107 |
| Cl      | 1251  | 2298  | 3822  | 5159   | 6542                | 9362   | 11,018 |
| Ar      | 1521  | 2666  | 3931  | 5771   | 7238                | 8781   | 11,995 |

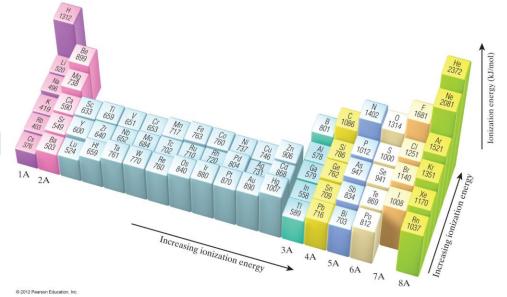
© 2012 Pearson Education, Inc.




- As one goes down a column, less energy is required to remove the first electron.
  - For atoms in the same group,  $Z_{\rm eff}$  is essentially the same, but the valence electrons are farther from the nucleus.


- Generally, as one goes across a row, it gets harder to remove an electron.
  - As you go from left to right,  $Z_{\rm eff}$  increases.




However, there are two apparent discontinuities in this trend.



- The first occurs between Groups IIA and IIIA.
- In this case the electron is removed from a p orbital rather than an s orbital.
  - The electron removed is farther from the nucleus.
  - There is also a small amount of repulsion by the s electrons.



- The second discontinuity occurs between Groups VA and VIA.
  - The electron removed comes from a doubly occupied orbital.
  - Repulsion from the other electron in the orbital aids in its removal.



### Electron Affinity

Electron affinity is the energy change accompanying the addition of an electron to a gaseous atom:

$$CI + e^- \longrightarrow CI^-$$

QA

| 1A            |               |
|---------------|---------------|
| <b>H</b> -73  | 2A            |
| <b>Li</b> -60 | <b>Be</b> > 0 |
| <b>Na</b> -53 | <b>Mg</b> > 0 |
| <b>K</b> -48  | <b>Ca</b> –2  |
| <b>Rb</b> -47 | <b>Sr</b> -5  |

© 2012 Pearson Education. Inc.

|               |                |                |                   |                | OA             |
|---------------|----------------|----------------|-------------------|----------------|----------------|
|               |                |                |                   |                | He             |
| 3A            | 4A             | 5A             | 6A                | 7A             | > 0            |
| <b>B</b> -27  | <b>C</b> –122  | <b>N</b> > 0   | <b>O</b> -141     | F<br>-328      | <b>Ne</b> > 0  |
| <b>Al</b> -43 | <b>Si</b> -134 | <b>P</b> −72   | <b>S</b> -200     | <b>Cl</b> -349 | <b>Ar</b> > 0  |
| <b>Ga</b> -30 | <b>Ge</b> -119 | <b>As</b> -78  | <b>Se</b><br>-195 | <b>Br</b> -325 | <b>K</b> r > 0 |
| In<br>-30     | <b>Sn</b> -107 | <b>Sb</b> -103 | <b>Te</b> -190    | I<br>-295      | <b>Xe</b> > 0  |

In general, electron affinity becomes more exothermic as you go from left to right across a row.

8A

| 1A            |               |
|---------------|---------------|
| <b>H</b> -73  | 2A            |
| <b>Li</b> -60 | <b>Be</b> > 0 |
| <b>Na</b> -53 | <b>Mg</b> > 0 |
| <b>K</b> -48  | <b>Ca</b> –2  |
| Rb<br>-47     | <b>Sr</b> -5  |

| 3A            | 4A             | 5A             | 6A                | 7A             | <b>He</b> > 0 |
|---------------|----------------|----------------|-------------------|----------------|---------------|
| <b>B</b> −27  | <b>C</b> –122  | <b>N</b> > 0   | <b>O</b> -141     | <b>F</b> −328  | <b>Ne</b> > 0 |
| <b>Al</b> -43 | <b>Si</b> -134 | <b>P</b> −72   | <b>S</b> -200     | <b>Cl</b> -349 | <b>Ar</b> > 0 |
| <b>Ga</b> -30 | <b>Ge</b> -119 | <b>As</b> -78  | <b>Se</b><br>-195 | <b>Br</b> -325 | <b>Kr</b> > 0 |
| In -30        | <b>Sn</b> –107 | <b>Sb</b> -103 | <b>Te</b> -190    | I<br>-295      | <b>Xe</b> > 0 |

There are again, however, two discontinuities in this trend.

© 2012 Pearson Education, Ir

Q A

| 1A            |               |
|---------------|---------------|
| <b>H</b> -73  | 2A            |
| <b>Li</b> -60 | <b>Be</b> > 0 |
| <b>Na</b> -53 | <b>Mg</b> > 0 |
| <b>K</b> -48  | <b>Ca</b> –2  |
| Rb -47        | <b>Sr</b> -5  |

|               |                |                |                   |                | OA            |
|---------------|----------------|----------------|-------------------|----------------|---------------|
| 3A            | 4A             | 5A             | 6A                | 7A             | <b>He</b> > 0 |
| <b>B</b> -27  | <b>C</b> –122  | <b>N</b> > 0   | <b>O</b> -141     | F<br>-328      | <b>Ne</b> > 0 |
| <b>Al</b> -43 | <b>Si</b> -134 | <b>P</b> -72   | <b>S</b> -200     | C1<br>-349     | <b>Ar</b> > 0 |
| <b>Ga</b> -30 | <b>Ge</b> -119 | <b>As</b> -78  | <b>Se</b><br>-195 | <b>Br</b> -325 | <b>Kr</b> > 0 |
| In<br>-30     | <b>Sn</b> -107 | <b>Sb</b> -103 | <b>Te</b> -190    | I<br>-295      | <b>Xe</b> > 0 |

The first occurs between Groups IA and IIA.

- The added electron must go in a p orbital, not an s orbital.
- The electron is farther from the nucleus and feels repulsion from the s electrons.

QA

| 1A            |               |
|---------------|---------------|
| <b>H</b> -73  | 2A            |
| <b>Li</b> -60 | <b>Be</b> > 0 |
| <b>Na</b> -53 | <b>Mg</b> > 0 |
| <b>K</b> -48  | <b>Ca</b> –2  |
| <b>Rb</b> -47 | <b>Sr</b> -5  |

© 2012 Pearson Education. Inc.

|               |                |                |                   | 1               | OA            |
|---------------|----------------|----------------|-------------------|-----------------|---------------|
|               |                |                |                   |                 | He            |
| 3A            | 4A             | 5A             | 6A                | 7A              | > 0           |
| <b>B</b> -27  | <b>C</b> –122  | <b>N</b> > 0   | <b>O</b> -141     | F<br>-328       | <b>Ne</b> > 0 |
| <b>Al</b> -43 | <b>Si</b> -134 | <b>P</b> −72   | <b>S</b> -200     | <b>C</b> 1 -349 | <b>Ar</b> > 0 |
| <b>Ga</b> -30 | <b>Ge</b> -119 | <b>As</b> -78  | <b>Se</b><br>-195 | <b>Br</b> -325  | <b>Kr</b> > 0 |
| In<br>-30     | <b>Sn</b> -107 | <b>Sb</b> -103 | <b>Te</b> -190    | I<br>-295       | <b>Xe</b> > 0 |

The second discontinuity occurs between Groups IVA and VA.

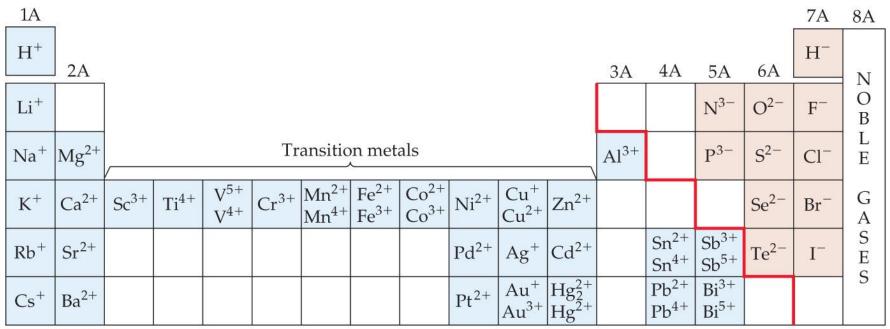
- Group VA has no empty orbitals.
- The extra electron must go into an already occupied orbital, creating repulsion.

## Properties of Metal, Nonmetals,

|                     |                 |                    |                  | Increasing metallic character |                  |                  |                  |                  |                  |                  |                  |                   |                 |                 |                  |                  |                  |                 |
|---------------------|-----------------|--------------------|------------------|-------------------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|-------------------|-----------------|-----------------|------------------|------------------|------------------|-----------------|
|                     | 1A<br>1         | _                  |                  |                               |                  | <b>←</b>         |                  |                  |                  |                  |                  |                   |                 |                 |                  |                  |                  | 8A<br>18        |
| cter                | 1<br><b>H</b>   | 2A<br>2            |                  |                               |                  |                  |                  |                  |                  |                  |                  |                   | 3A<br>13        | 4A<br>14        | 5A<br>15         | 6A<br>16         | 7A<br>17         | 2<br>He         |
| character           | 3<br>Li         | 4<br>Be            |                  |                               |                  |                  |                  |                  |                  |                  |                  |                   | 5<br><b>B</b>   | 6<br><b>C</b>   | 7<br><b>N</b>    | 8<br><b>O</b>    | 9<br><b>F</b>    | 10<br><b>Ne</b> |
|                     | 11<br><b>Na</b> | 12<br><b>Mg</b>    | 3B<br>3          | 4B<br>4                       | 5B<br>5          | 6B<br>6          | 7B<br>7          | 8                | 8B<br>9          | 10               | 1B<br>11         | 2B<br>12          | 13<br><b>Al</b> | 14<br><b>Si</b> | 15<br><b>P</b>   | 16<br><b>S</b>   | 17<br><b>Cl</b>  | 18<br><b>Ar</b> |
| Increasing metallic | 19<br><b>K</b>  | 20<br><b>Ca</b>    | 21<br>Sc         | 22<br><b>Ti</b>               | 23<br><b>V</b>   | 24<br>Cr         | 25<br><b>Mn</b>  | 26<br><b>Fe</b>  | 27<br><b>Co</b>  | 28<br><b>Ni</b>  | 29<br><b>Cu</b>  | 30<br><b>Zn</b>   | 31<br><b>Ga</b> | 32<br><b>Ge</b> | 33<br><b>As</b>  | 34<br><b>Se</b>  | 35<br><b>Br</b>  | 36<br><b>Kr</b> |
|                     | 37<br><b>Rb</b> | 38<br><b>Sr</b>    | 39<br><b>Y</b>   | 40<br><b>Zr</b>               | 41<br><b>Nb</b>  | 42<br><b>Mo</b>  | 43<br><b>Tc</b>  | 44<br>Ru         | 45<br><b>Rh</b>  | 46<br><b>Pd</b>  | 47<br><b>Ag</b>  | 48<br><b>Cd</b>   | 49<br><b>In</b> | 50<br><b>Sn</b> | 51<br><b>Sb</b>  | 52<br><b>Te</b>  | 53<br><b>I</b>   | 54<br><b>Xe</b> |
| ıcrea               | 55<br><b>Cs</b> | 56<br><b>Ba</b>    | 71<br>Lu         | 72<br><b>Hf</b>               | 73<br><b>Ta</b>  | 74<br><b>W</b>   | 75<br><b>Re</b>  | 76<br><b>Os</b>  | 77<br>Ir         | 78<br><b>Pt</b>  | 79<br><b>Au</b>  | 80<br><b>Hg</b>   | 81<br><b>Tl</b> | 82<br><b>Pb</b> | 83<br><b>Bi</b>  | 84<br><b>Po</b>  | 85<br><b>At</b>  | 86<br><b>Rn</b> |
| TH                  | 87<br><b>Fr</b> | 88<br><b>Ra</b>    | 103<br><b>Lr</b> | 104<br><b>Rf</b>              | 105<br><b>Db</b> | 106<br><b>Sg</b> | 107<br><b>Bh</b> | 108<br><b>Hs</b> | 109<br><b>Mt</b> | 110<br><b>Ds</b> | 111<br><b>Rg</b> | 112<br><b>C</b> p | 113             | 114             | 115              | 116              | 117              | 118             |
| г                   |                 |                    |                  |                               |                  |                  | ľ                |                  | 1                |                  |                  |                   |                 |                 |                  |                  |                  |                 |
| Į                   |                 | etals              |                  | 57<br><b>La</b>               | 58<br><b>Ce</b>  | 59<br><b>Pr</b>  | 60<br><b>Nd</b>  | 61<br><b>Pm</b>  | 62<br><b>Sm</b>  | 63<br><b>Eu</b>  | 64<br><b>Gd</b>  | 65<br><b>Tb</b>   | 66<br><b>Dy</b> | 67<br><b>Ho</b> | 68<br><b>Er</b>  | 69<br><b>Tm</b>  | 70<br><b>Yb</b>  |                 |
| [                   |                 | etalloic<br>onmeta |                  | 89<br><b>Ac</b>               | 90<br><b>Th</b>  | 91<br><b>Pa</b>  | 92<br><b>U</b>   | 93<br><b>Np</b>  | 94<br><b>Pu</b>  | 95<br><b>Am</b>  | 96<br><b>Cm</b>  | 97<br><b>Bk</b>   | 98<br><b>Cf</b> | 99<br><b>Es</b> | 100<br><b>Fm</b> | 101<br><b>Md</b> | 102<br><b>No</b> |                 |

© 2012 Pearson Education, Inc.

#### Metals versus Nonmetals


| TABLE 7.3 • Characteristic Properties of Metals and Nonmetals  |                                                                          |  |  |  |
|----------------------------------------------------------------|--------------------------------------------------------------------------|--|--|--|
| Metals                                                         | Nonmetals                                                                |  |  |  |
| Have a shiny luster; various colors, although most are silvery | Do not have a luster; various colors                                     |  |  |  |
| Solids are malleable and ductile                               | Solids are usually brittle; some are hard, some are soft                 |  |  |  |
| Good conductors of heat and electricity                        | Poor conductors of heat and electricity                                  |  |  |  |
| Most metal oxides are ionic solids that are basic              | Most nonmetal oxides are molecular substances that form acidic solutions |  |  |  |
| Tend to form cations in aqueous solution                       | Tend to form anions or oxyanions in aqueous solution                     |  |  |  |

© 2012 Pearson Education, Inc.

Differences between metals and nonmetals tend to revolve around these properties.

#### Metals versus Nonmetals

- Metals tend to form cations.
- Nonmetals tend to form anions.



© 2012 Pearson Education, Inc.

#### Metals



Metals tend to be lustrous, malleable, ductile, and good conductors of heat and electricity.

#### Metals

- Compounds formed between metals and nonmetals tend to be ionic.
- Metal oxides tend to be basic.

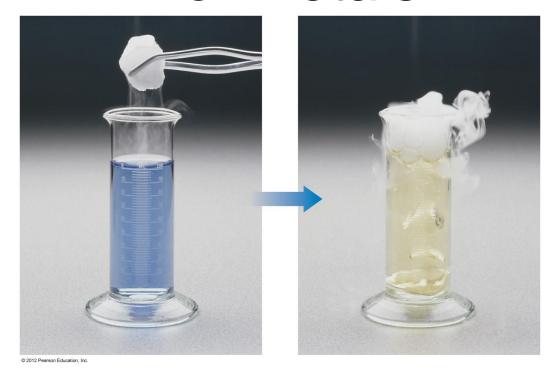


Nickle oxide (NiO), nitric acid (HNO<sub>3</sub>), and water



Insoluble NiO

NiO is insoluble in water but reacts with  $HNO_3$  to give a green solution of the salt  $Ni(NO_3)_2$ 


© 2012 Pearson Education, Inc.

#### Nonmetals



- Nonmetals are dull, brittle substances that are poor conductors of heat and electricity.
- They tend to gain electrons in reactions with metals to acquire a noble-gas configuration.

#### Nonmetals



- Substances containing only nonmetals are molecular compounds.
- Most nonmetal oxides are acidic.

#### Metalloids



- Metalloids have some characteristics of metals and some of nonmetals.
- For instance, silicon looks shiny, but is brittle and a fairly poor conductor.

## Group Trends

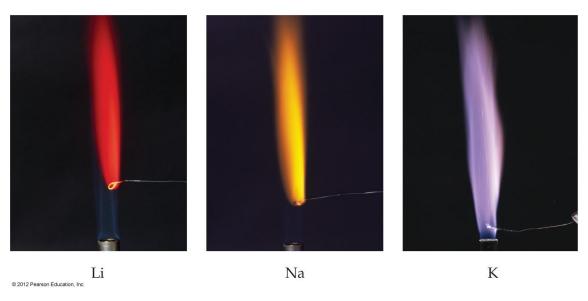
- Alkali metals are soft, metallic solids.
- The name comes from the Arabic word for ashes.



- They are found only in compounds in nature, not in their elemental forms.
- They have low densities and melting points.
- They also have low ionization energies.

| TABLE 7.4 • Some Properties of the Alkali Metals |                           |                       |                              |                      |                |
|--------------------------------------------------|---------------------------|-----------------------|------------------------------|----------------------|----------------|
| Element                                          | Electron<br>Configuration | Melting<br>Point (°C) | Density (g/cm <sup>3</sup> ) | Atomic<br>Radius (Å) | $I_1$ (kJ/mol) |
| Lithium                                          | $[He]2s^1$                | 181                   | 0.53                         | 1.34                 | 520            |
| Sodium                                           | $[Ne]3s^1$                | 98                    | 0.97                         | 1.54                 | 496            |
| Potassium                                        | $[Ar]4s^1$                | 63                    | 0.86                         | 1.96                 | 419            |
| Rubidium                                         | [Kr]5s <sup>1</sup>       | 39                    | 1.53                         | 2.11                 | 403            |
| Cesium                                           | $[Xe]6s^1$                | 28                    | 1.88                         | 2.25                 | 376            |

© 2012 Pearson Education, Inc.




Their reactions with water are famously exothermic.

- Alkali metals (except Li) react with oxygen to form peroxides.
- K, Rb, and Cs also form superoxides:

$$K + O_2 \longrightarrow KO_2$$

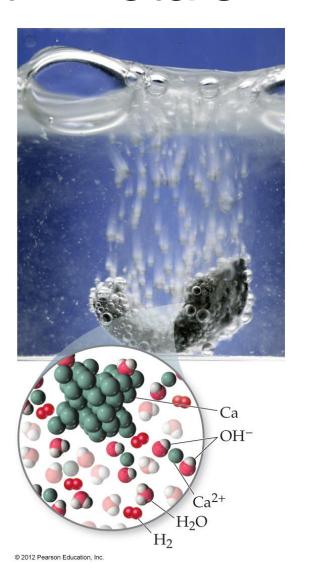
They produce bright colors when placed in a flame.



Periodic Properties of the Elements

© 2012 Pearson Education, Inc.

#### Alkaline Earth Metals


| TABLE 7.5 • Some Properties of the Alkaline Earth Metals |                           |                       |                              |                      |                |
|----------------------------------------------------------|---------------------------|-----------------------|------------------------------|----------------------|----------------|
| Element                                                  | Electron<br>Configuration | Melting<br>Point (°C) | Density (g/cm <sup>3</sup> ) | Atomic<br>Radius (Å) | $I_1$ (kJ/mol) |
| Beryllium                                                | $[He]2s^2$                | 1287                  | 1.85                         | 0.90                 | 899            |
| Magnesium                                                | $[Ne]3s^2$                | 650                   | 1.74                         | 1.30                 | 738            |
| Calcium                                                  | $[Ar]4s^2$                | 842                   | 1.55                         | 1.74                 | 590            |
| Strontium                                                | $[Kr]5s^2$                | 777                   | 2.63                         | 1.92                 | 549            |
| Barium                                                   | $[Xe]6s^2$                | 727                   | 3.51                         | 1.98                 | 503            |

© 2012 Pearson Education, Inc.

- Alkaline earth metals have higher densities and melting points than alkali metals.
- Their ionization energies are low, but not as low as those of alkali metals.

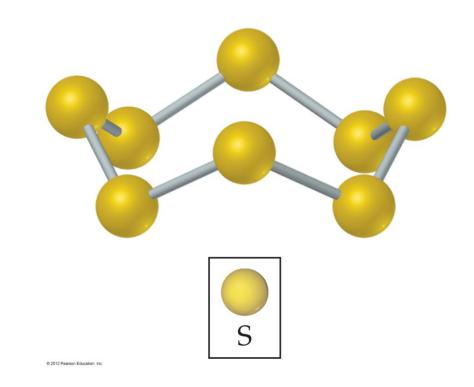
### Alkaline Earth Metals

- Beryllium does not react with water, and magnesium reacts only with steam, but the other alkaline earth metals react readily with water.
- Reactivity tends to increase as you go down the group.



### Group 6A

**TABLE 7.6** • Some Properties of the Group 6A Elements


| Element   | Electron<br>Configuration    | Melting<br>Point (°C) | Density               | Atomic<br>Radius (Å) | $I_1$ (kJ/mol) |
|-----------|------------------------------|-----------------------|-----------------------|----------------------|----------------|
| Oxygen    | [He] $2s^22p^4$              | -218                  | 1.43 g/L              | 0.73                 | 1314           |
| Sulfur    | $[Ne]3s^23p^4$               | 115                   | $1.96 \text{ g/cm}^3$ | 1.02                 | 1000           |
| Selenium  | $[Ar]3d^{10}4s^24p^4$        | 221                   | $4.82 \text{ g/cm}^3$ | 1.16                 | 941            |
| Tellurium | $[Kr]4d^{10}5s^25p^4$        | 450                   | $6.24 \text{ g/cm}^3$ | 1.35                 | 869            |
| Polonium  | $[Xe]4f^{14}5d^{10}6s^26p^4$ | 254                   | $9.20 \text{ g/cm}^3$ | _                    | 812            |

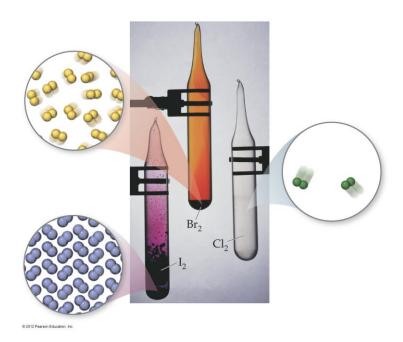
© 2012 Pearson Education, Inc.

- Oxygen, sulfur, and selenium are nonmetals.
- Tellurium is a metalloid.
- The radioactive polonium is a metal.

#### Sulfur

- Sulfur is a weaker oxidizer than oxygen.
- The most stable allotrope is S<sub>8</sub>, a ringed molecule.




### Group VIIA: Halogens

| TABLE 7.7 • Some Properties of the Halogens |                           |                       |                       |                      |                |
|---------------------------------------------|---------------------------|-----------------------|-----------------------|----------------------|----------------|
| Element                                     | Electron<br>Configuration | Melting<br>Point (°C) | Density               | Atomic<br>Radius (Å) | $I_1$ (kJ/mol) |
| Fluorine                                    | [He] $2s^22p^5$           | -220                  | 1.69 g/L              | 0.71                 | 1681           |
| Chlorine                                    | $[Ne]3s^23p^5$            | -102                  | 3.12  g/L             | 0.99                 | 1251           |
| Bromine                                     | $[Ar]3d^{10}4s^24p^5$     | -7.3                  | $3.12 \text{ g/cm}^3$ | 1.14                 | 1140           |
| Iodine                                      | $[Kr]4d^{10}5s^25p^5$     | 114                   | $4.94 \text{ g/cm}^3$ | 1.33                 | 1008           |

© 2012 Pearson Education, Inc.

- The halogens are prototypical nonmetals.
- The name comes from the Greek words halos and gennao: "salt formers."

### Group VIIA: Halogens



- They have large, negative electron affinities.
  - Therefore, they tend to oxidize other elements easily.
- They react directly with metals to form metal halides.
- Chlorine is added to water supplies to serve as a disinfectant.

### Group VIIIA: Noble Gases

| TABLE 7.8 • Some Properties of the Noble Gases |                              |                      |               |                       |                |
|------------------------------------------------|------------------------------|----------------------|---------------|-----------------------|----------------|
| Element                                        | Electron<br>Configuration    | Boiling<br>Point (K) | Density (g/L) | Atomic<br>Radius* (Å) | $I_1$ (kJ/mol) |
| Helium                                         | $1s^2$                       | 4.2                  | 0.18          | 0.32                  | 2372           |
| Neon                                           | $[He]2s^22p^6$               | 27.1                 | 0.90          | 0.69                  | 2081           |
| Argon                                          | $[Ne]3s^23p^6$               | 87.3                 | 1.78          | 0.97                  | 1521           |
| Krypton                                        | $[Ar]3d^{10}4s^24p^6$        | 120                  | 3.75          | 1.10                  | 1351           |
| Xenon                                          | $[Kr]4d^{10}5s^25p^6$        | 165                  | 5.90          | 1.30                  | 1170           |
| Radon                                          | $[Xe]4f^{14}5d^{10}6s^26p^6$ | 211                  | 9.73          | 1.45                  | 1037           |

<sup>\*</sup>Only the heaviest of the noble-gas elements form chemical compounds. Thus, the atomic radii for the lighter noble-gas elements are estimated values.

- The noble gases have astronomical ionization energies.
- Their electron affinities are positive.
  - Therefore, they are relatively unreactive.
- They are found as monatomic gases.